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Abstract— Social networks have attracted billions of users and
supported a wide range of interests and practices. Users of
social networks can be connected with each other by different
communities according to professions, living locations, and per-
sonal interests. With the development of diverse social network
applications, academic researchers, and practicing engineers pay
increasing attention to the related technology. As each user
on the social network platforms typically stores and shares a
large amount of personal data, the privacy of such user-related
information raises serious concerns. Most research on privacy
protection relies on specific information security techniques such
as anonymization or access control. However, the protection of
privacy depends heavily on the incentive mechanisms of social
networks, like users’ psychological decisions on security execution
and socio-economic considerations. For example, the desire to
influence the behaviors of other people may change a user’s
choice of security setting. In this paper, a game theoretic
framework is established to model users’ interactions that
influence users’ decisions as to whether to undertake privacy
protection or not. To model the relationship of user communities,
community-structured evolutionary dynamics are introduced,
in which interactions of users can only happen among those
users who have at least one community in common. Then the
dynamics of the users’ strategies to take a specific privacy
protection or not is analyzed based on the proposed community
structured evolutionary game theoretic framework. Experiments
show that the proposed framework is effective in modeling the
users’ relationships and privacy protection behaviors. Moreover,
results can also help social network managers to design appro-
priate security service and payment mechanisms to encourage
their users to take the privacy protection, which can promote
the spreading of privacy behavior throughout the network.
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I. INTRODUCTION

OVER the past decade there has been an unprecedented
development of social network applications. Online

social networks, such as Facebook, Google+, and Twitter
are inherently designed to enable people to distribute and
share personal and public information [1]–[4]. In addition,
social connections among friends, colleagues, family mem-
bers, and even strangers with similar interests are estab-
lished via these online social network platforms. However,
as these platforms, as well as other online applications and
cloud computing, allow their users to host large amounts
of personal data on their platforms, important concerns
regarding the security and privacy of user-related information
arise [5]–[9]. How to protect users’ personal information,
and encourage users to participate the privacy protection to
improve the information security of the entire social network,
have become one of critical problems for social network
managers.

In response, many social networks have provided different
privacy protection measures to try to protect their users’
personal information. Take “Privacy Setting and Tools” of
Facebook for instance, it allows the users to decide who
can see their stuff, contact them and look them up to obtain
different levels of protection. In addition, the “Privacy and
safety” settings of Twitter provide some similar options for its
users to determine that who can receive their Tweets, tag them
in photos, etc. Furthermore, privacy protection mechanisms
have been also studied from many aspects such as information
collection, information processing [10]–[12], anonymity [13],
access control [14], [15], etc., to improve the security of users’
data. However, users’ decisions, actions, and preferences
regarding personal information security, and social-economic
relationships, can critically influence the implementation of
privacy protection on online social network platforms. On the
one hand, a user’s selection of security level can protect
her or his own personal information, and help to preserve the
privacy of others related to this user. On the other hand, users’
behavior to adopt security measures can be affected by the
decisions of other users and potentially spread throughout
the entire social network, depending of course depends on
the network topology. Thus, the privacy protection of users
in the network relies on its users to make use of security
services to protect their friends’ and their own information,
and this behavior is conditional. One user has to make a
decision on whether or not to undertake privacy protection
according to many considerations, such as if and how many
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friends of his/hers make the same choice. To understand and
to model such interactions among users, game theory can be
used. Particularly useful is evolutionary game theory which
considers that a game is played over and over again by socially
conditioned players randomly drawn from large populations.
It studies population shift and evolution processes, and pays
particular attention to the dynamics and stability of the strate-
gies of the entire population. For the privacy protection issues,
evolutionary game theory can be used to model the spreading
of users’ security behavior over social networks, which heavily
depends on the interaction and friendship among the users.
Thus, in this paper, we establish a community structured
evolutionary game theoretic framework to analyze and reveal
the interactions between users and the spreading of security
behavior throughout a social network.

A. Literature Review
Game theoretic models and evolutionary game theoretic

models have been introduced in the literature to comprehend
and to interpret the interactions among network users regarding
personal information security. In [16], the authors organized
the presented works on network security and privacy into six
main categories: security of the physical and medium access
control (MAC) layers, security of self-organizing networks,
intrusion detection systems, anonymity and privacy, economics
of network security, and cryptography. In each category, they
identified security problems, players, and game models, and
main results such as equilibrium analysis. In [17], the authors
formulated a non-cooperative cyber security information shar-
ing game, the strategies of which are participation and sharing
versus non-participation. They analyzed the game from an
evolutionary game-theoretic viewpoint, and determined the
conditions under which the players’ self-enforced evolutionary
stability can be achieved. A model of an evolutionary game
between social network sites (SNS) and their users was
established from the perspective of privacy concerns in [18].
In this work, the SNS tend to decide whether to disclose users’
privacy or not for profit, and users tend to decide about privacy
disclosure to obtain certain benefits. Authors of [19] pro-
posed an evolutionary game theoretic framework to model the
dynamic information diffusion process in social networks, and
derived the closed-form expressions of the evolutionary stable
network states through analyzing the proposed framework in
uniform degree and non-uniform degree networks. For a better
understanding of online information exposure, a deception
model for online users was proposed in [20] based on a
game theoretic approach characterizing a user’s willingness
to release, withhold or lie about information depending on the
behavior of individuals within the user’s circle of friends.

As mentioned previously, the influence of users’ behaviors
also plays an important role on the selection of privacy
protection throughout the social network. In other words,
behaviors of users can spread over the network according to
some kind of natural selection. In the practice of a game, if the
utility obtained by one strategy is larger than that by another
strategy for a specific player, this strategy will be imitated by
other players of high probability, which suggests this strategy
is more likely being spread over the entire social network.

For the user privacy concerns, it is important to analyze the
spreading and influence of user behaviors that make use of the
privacy protection or not. Based on such analysis, the benefit-
cost mechanism can be designed to promote the use of the
privacy protection among the users, and then the information
security of the social network can be improved. The spreading
of human behaviors has been studied from various aspects.
In [21], individuals were separated into interdependent groups,
and their different combinations were studied to reveal that an
intermediate interdependence optimally facilitates the spread-
ing of cooperative behavior between groups. It has been shown
that there is an intermediate fraction of links between groups
that is optimal for the evolution of cooperation in the prisoner’s
dilemma game. Results in [22] suggested that strong ties are
instrumental for spreading both online and real-world behavior
in human social networks. The authors demonstrated that the
messages diffused in the network directly influenced political
self-expression, information seeking and real world voting
behavior of millions of people. Furthermore, the messages not
only influenced the users who received them but also the users’
friends, and friends of friends. It was suggested in [23] that
if the goal of policy is to adequately protect privacy, then we
need policies that protect individuals with minimal require-
ments of informed and rational decision making that include
a baseline framework of protection. In [24], a model for small-
world networks regarding information epidemics was proposed
to analyze the mixed behaviors of delocalized infection and
ripple-based propagation for hybrid malware in generalized
social networks consisting of personal and spatial social rela-
tions. A number of other works have analyzed the spread of
user behavior based on the epidemic spreading theory or social
contagion [25]–[27].

B. Contribution
Most current research on privacy protection and behavior

spreading considers a social network of a regular, random,
and flattened topology. Based on this assumption, individuals
connect with each other, and the influence of users’ actions and
behaviors is spread over the entire social network accordingly.
However, in a real social network, the relationships among
users are much more complicated than these simple models.
Moreover, the interaction and influence between any two users
largely depends on how close the relationship between these
two users is. In this research, we model the population of social
networks as a community structure in order to characterize
the connections of users in a more appropriate and accurate
way. By this community structure based model, we may
successfully analyze the spreading of the privacy protection
behavior over the social network.

The main contributions of this paper include:
• We propose a game theoretic framework to model the

interaction and influence when users choose strategies
that make use of the privacy protection or not. The frame-
work reveals that the protection of the users’ privacy
information depends not only on the users’ own strate-
gies, but also strategies of other users. In other words,
the framework can analyze the information protection
through users’ interactions and decision making.
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• We establish a community structure based evolutionary
game theory to model and analyze the privacy protection
over social networks with a community structured popu-
lation. This framework can characterize the dynamics of
the process of the users’ behaviors regarding taking the
privacy protection or not. In addition, the framework can
also predict the final stable behavior spreading state.

• Based on the proposed community structure based evolu-
tionary game theory framework, we analyze the dynamics
of the users’ behaviors with regard to taking the privacy
protection or not. The critical cost performance is ana-
lyzed for both non-triggering game and triggering game
scenarios. The critical cost performance is an important
parameter, exceeding the value of which the behavior
of taking the privacy protection is more frequent than
the behavior of not taking the privacy protection in the
equilibrium distribution of the deviation-imitation process
in the social network.

The rest of this paper is organized as follows. In Section II,
the community structure based evolutionary game formulation
of privacy protection in social networks is described. The pri-
vacy protection among users belonging to K communities and
evolution of security behavior are analyzed in Section III.
Then we extend the model to a triggering interaction scenario
in Section IV. Simulations are shown in Section V, and
conclusions are drawn in Section VI.

II. COMMUNITY STRUCTURE BASED EVOLUTIONARY

GAME FORMULATION

A. Basic Concept of Evolutionary Game

Consider an evolutionary game with r strategies χ =
{1, 2, · · · , r} and a payoff matrix U, which is an r × r matrix
with entry umn denoting the payoff for strategy m versus
strategy n. The system state of the game can be denoted as
p = [p1, p2, · · · , pr ]T. In this case, the average mean payoff
within a population in state q = [q1, q2, · · · , qr ]� against a
population in state p is q�Up.

Definition 1 (Evolutionary Stable State, ESS): A state p∗
is an ESS, if and only if p∗ satisfies following conditions for
all different states q �= p [28]:

q�Up∗ ≤ p∗�Up∗,
if q�Up∗ = p∗�Up∗, p∗�Uq > q�Uq. (1a)

In Definition 1, first condition (1a) is equivalent to the Nash
equilibrium condition, and ensures that the average payoff
of the population in ESS p∗ is not smaller than the average
payoff of the population in a different strategy q� against p∗.
The second condition (1a) further guarantees the stability
of ESS p∗ in case of equality in the equilibrium condition.
Solving the ESS is an important problem in an evolutionary
game [29], [30]. An approach to this problem is to find the
stable point

p∗ = argp (dp/dt = 0) (2)

of the network mean dynamics, which specifies that the rate of
change in the use of each strategy equals to zero [31], [32].
In this work, we analyze the frequency of users taking different

strategies over several times of updates in Section III. The net-
work evolves and updates according to the following process,
which is similar to the Wright-Fisher process [33]–[35].
The users with evolutionary behaviors and community mem-
berships are considered as discrete and non-overlapping
updated generations, and the number of users is constant.
All users update at the same time. Users reproduce their own
decisions in the new update proportional to their fitness [36],
which means that if the user has a higher fitness, he/she
tends to maintain his/her current strategy and community
memberships in the following update with a high probability.
Consider that when an offspring user adopts the imitated user’s
strategy and community memberships, he/she might select the
opposite strategy or different communities, which is similar to
the conception of “mutation” in genetic theory [37]. Denote u
as the probability with which an offspring adopts a random
security strategy, i.e., selecting the security service or not.
Then an offspring will adopt the imitated user’s strategy with
probability 1 − u. Similarly, denote v as the probability with
which a user adopts a random community memberships, which
includes that of the imitated user. Then a user adopts the
imitated user’s configuration with probability 1−v. Notice that
the probability that any possible configuration of community
membership is selected is v/

(
M
K

)
.

B. Community Structured Evolutionary Game Formulation

Assume that a social network can provide a higher grade
of security, i.e., privacy protection, for users’ privacy besides
the basic services. This additional security service for user
privacy protection means applying more advanced encryption
and anonymization, secure database management and dissem-
ination, and personal privacy protection techniques to data
processing on the user privacy information. When users take
this security service, they need to accept terms ruled by the
network, such as that users have to provide more personal
information, complete real-name authentication or pay for the
service. Then they can get more privacy protection when other
legitimate or malicious persons and organizations access or use
their personal and privacy information. The more personal
information provided by one user to the social network man-
agers, the more secure authentication will be required when
stealing his/her information, and as a result, the better privacy
protection can be achieved for this user. In most real social
networks, these kinds of additional services are not mandatory,
and users are therefore free to accept such services or not,
according to users’ own judgements. For instance, users of
many forum websites are usually required to provide a mobile
phone number or e-mail address to get a higher level of the
user information security service, although this service is not
mandatory.1

1Current social networks have provide some privacy protection measures for
their users. For instance, there are many optional settings in “Privacy Settings
and Tools” of Facebook. However, such protection tends to be weak when
the users’ privacy information are suffering professional or specialized attacks
of hackers. The privacy protection service provided by network managers
mentioned in our work refers to the high-level technical protection for the
user’s privacy, not just simple options by users without any pay.
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In current social networks, users are allowed to join mul-
tiple but a limited number of communities according to
their professions, living or touring locations, expertise, or
personal interests, etc. For instance, the Google Circles and
Facebook Groups can be considered as establishing different
communities or some kinds of relationships for their users.
We consider that these users are classified by their categories
of groups, which can be termed communities of the population
structure, and the friendships are established among users
in the same community. Therefore, each user holds multiple
friendship relations with the users in the same community.
The degree of closeness in the relationship between two users
can be measured by the number of communities they share.
Take users in Google Groups for instance, if User A and
User B are both in the Group “Arts and Entertainment” and
Group “Schools and Universities” at the same time, then
we can consider that the relationship between A and B is
stronger than that between B and C, who only belong to
Group “Arts and Entertainment” in common. In addition,
the information shared between A and B will typically be more
than that between B and C. Assume that users are allowed
to change communities, which can be influenced by their
own or other users’ actions. Consider that user interactions
can only happen between individuals belonging to the same
community, i.e., having some kinds of friend relationships
in a social network. Interaction among users in this work
refers to the influence of their friends and their own strategies,
i.e., the payoff obtained through the game. In addition, some
of users’ information, such as personal information and status,
is accessible only to their friends.

Based on these premises above, we assume that the infor-
mation of both of a user and his/her friends can be protected
by the network to some extent if the user makes use of the
privacy protection, even if his/her friends do not take the same
action. We assume that, the user taking the privacy protection
can obtain this service by paying a price as a deal with the net-
work manager. Meanwhile, the privacy information of his/her
friends can also be protected by the network no matter whether
these friends take the privacy protection service or not. Taking
WeChat for instance, the Moments (similar to the Timeline of
Facebook) of a user can only be seen by his/her friends, and
the Group Chat can be organized by one user among his/her
friends, not matter whether these friends are also friends with
each other or not. In addition, Facebook provides an optional
setting in “Privacy Settings and Tools”: Who can see your
friends list, which can illustrate that user’s security behavior
makes sense on the information protection of his/her friends.
The closer the relationship is, the more personal information of
the user can be accessed by his/her friends. If the user’s friend
makes use of the privacy protection or some other information
security services, the accessible information of this user can be
also protected at some level. The more accessible information
for his/her friend, the more information can be protected,
even when this user does not take the privacy protection.
In this work, we assume that the privacy protection service
not only protects the information of the users who select this
service, but also the information these users can access, i.e., the
information of their friends. Therefore, if the user does not

select the service, the personal information of his/her friends
will also be threatened by this user’s unsafe strategies.

Privacy protection over a social network shares fundamental
similarities with the strategy updating in the community-
structured evolutionary game theory (EGT). We consider
users in a social network as the players in the evolution-
ary game. Each of these users has two possible strategies,
i.e., to take or not take the privacy protection provided by the
network:

{
Sp, take the privacy protection,

Sn, do not take the privacy protection.
(3)

The strategy taking the privacy protection can be considered
as the secure behavior, and otherwise, insecure behavior.
Meanwhile, the users’ payoff matrix can be defined as

Sp Sn

Sp

Sn

(
βb − c b − c

b 0

)
,

(4)

where b > 0 is the baseline security benefit received by
the user resulting from that this user or this user’s friends
take the privacy protection (security behavior). For existing
social networks, b can be set as traditional measurements of
privacy, such as disclosure risk and information loss, when
applying current encryption, anonymization, secure database
management and dissemination techniques. c > 0 denotes the
cost that users taking the privacy protection need to pay for the
protection service, which could be more personal information
providing, real-name authentication and payment as required
by current social networks. On the other hand, if the privacy
protection service is provided through an application (APP)
update, which is a common approach adopted by WeChat,
Twetter and other existing social networks, the cost for user
to take the service can be then measured by the increasing
memory occupancy of the latest APP version. In addition,
when both of the interacted users take strategy Sp , two of
them will obtain higher level privacy safety benefit βb as the
first entry of the payoff matrix shown in (4), where β > 1.
The payoff will be zero when both of the interacted friends are
defectors, i.e., neither of them selects the privacy protection
service, then no pay or gain for them.

Based on the definitions of the strategies and payoff
above, ratio b/c or βb/c, which can be defined as the cost
performance, is a crucial parameter. It can help the social
network managers to make appropriate security service level
and payment mechanism to encourage their users to accept
the security service, and then promote the spreading of this
secure behavior. In a community structured population well-
mixed, any two individuals belonging to the same community
interact with equal likelihood. Then as reflected in (4), users
taking the privacy protection would be out-competed by those
users doing not. Therefore, the interaction between users
with security behavior and with insecurity behavior needs to
be investigated, and the question that whether dynamics on
a community structured population allows the evolution of
security behavior needs to be figured out.

Consider a social network with N users. The num-
ber of communities operated by the social network is M .
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However, users of current social networks are only allowed to
join a limited number of these communities. Then we set that
each user belongs to exactly K communities, where K ≤ M .
In addition, each user has a strategy index si ∈ {0, 1}, which is
defined as that si = 1 when user i take the privacy protection
strategy Sp , or si = 0, otherwise. Then the state of the social
network can be given by a strategy vector s = [s1, s2, · · · , sN ]
and a matrix �. � is an N × M matrix, whose entry θim

(i = 1, 2, · · · , N , m = 1, 2, · · · ,M) is 1 if user i belongs
to community m, and θim = 0, otherwise. Matrix � can
be represented as � = [θ1, θ2, · · · , θN ]T, where θi is the
vector giving the community membership of user i . Then
the number of communities that user i and user j having
in common can be expressed by the dot product of their
community membership vector, as θi · θ j . In addition, based
on the definition of K , we have θi · θi = K , ∀i . The state of
the social network can be given as S = (s,�).

We assume the influence of user j on i (i �= j ) is related
to the number of communities that they share in common.
Specifically, user i ’s fitness obtained by j is proportional to the
total utility according to (4), and the proportional coefficient
is the number of communities that i and j share in common.
In addition, user i interacts with user j only when they share
at least one community in common, i.e., θi · θ j �= 0. Then
the total fitness of user i of the community-structured social
network can be written as

πi =1 +α
∑

j �=i

(
θi ·θj

) [
(βb−c)si s j +(b−c)si

(
1−s j

)

+b (1 − si ) s j
]

=1+α
∑

j �=i

(
θi ·θj

) [
(β−2) bsi s j +(b − c) si +bs j

]
,

(5)

where α represents the selection intensity, i.e., the relative
contribution of the game to fitness. The case α = 1 denotes
the strong selection, which means that the payoff obtained
through (4), i.e., the game among users with strategies Sp

and Sn , plays an dominant contribution to the total fitness of
every user, and then the user with high payoff will be chosen
and imitated with high probability. On the contrary, α → 0
denotes the weak selection [38]. Under the weak selection,
the payoff obtained through (4) has limited contribution to the
total fitness of each user. In this work, we only analyze the
weak selection case as the results derived from weak selection
are often valid approximations for stronger selection [39].
In addition, the weak selection scenario can be more helpful to
reveal the user behavior spreading over social networks [19].

As an example shown in Fig. 1, there are N = 5 users,
denoted by U1 - U5, over M = 4 communities as ellipses A, B ,
C and D. Each user belongs to K = 2 communities. The com-
munity memberships determine how users interact each
other, and the broken lines indicate the weighted interaction.
The structure changes as users updating in discrete time slot.
In this example, U1, U3 and U5 take the same security strategy,
and the other users take the opposite strategy at the first time
slot. During the update process, imitator U1 picks another
user U2, and adopts U2’s security strategy and community
associations.

Table I indicates the correspondence between the elements
in the community structured evolutionary game theory and

Fig. 1. An example of security strategy and associations evolution over a
social network with a community structured population.

TABLE I

CORRESPONDENCE BETWEEN COMMUNITY STRUCTURED
EVOLUTIONARY THEORY AND SOCIAL NETWORK

those in the social network, whose users hold relationships
according to their interested communities. Based on the defin-
itions above, we can derive the expression for the critical cost
performance, which is an important parameter that determines
the stable security behavior state of the users among the
network. In the following section, we will analyze the critical
cost performance for the social network where games exist
among all users in the same community. In other words,
the security strategy of a user can only influence the payoff
of his/her friends who share at least one common community
with this user. Moreover, the critical cost performance for the
situation named “L-triggering game” will be further analyzed
in the later part of this work.

III. PRIVACY PROTECTION AMONG USERS BELONGING

TO K COMMUNITIES

In this section, we study the evolution of users’ behaviors
that take the privacy protection or not over social networks
using the evolutionary game theory based on the commu-
nity structured population. In the uniform scenario, a social
network with N users, each of whom belongs to exactly
K communities, is considered in this section. We define the
network user state as (p, 1 − p), where p is the frequency of
the users those select to take the privacy protection (choose
strategy Sp), and 1− p are the others (choose strategy Sn). Our
ultimate goal is to derive the evolutionary stable network state
(p∗, 1 − p∗) that ensures the evolution of security behavior,
i.e., users select strategy Sp more frequently than Sn .

A. Evolution of Security Behavior on Communities

First, we summarize the key conceptions in the spreading
of the privacy protection behavior when applying evolutionary
game into social networks.
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Update: Assume that users can change their community
memberships and security behaviors to get better user security
experience. This change can be considered as the update.

Imitation: In social networks, the imitation of other users’
behaviors plays an important role in behavior spreading.
By times of updates, the behavior with higher fitness can
spread among the users in the network. Specifically, a user’s
community membership and security behavior can bring high
fitness for the user, which means that the security behaviors
of this user and his/her friends obtain a relative high level of
privacy protection. Then for the security concern, other users
will tend to imitate this user’s community membership and
security behavior. Similarly, the user will maintain his/her own
community membership and security behavior if the current
fitness is rather high, which means that the user will imitate
hiself/herself.

Deviation: Deviation means that the user does not imitate
the community membership or community membership of the
users being imitated, who can be himself/herself and other
users with high fitness. The community and strategy deviation
can also make sense on the behavior spreading. On the one
hand, when a user imitate another one for a better security
experience, he/she only imitates the community membership.
This user might not change his/her previous security behavior,
i.e., he/she still not take the privacy protection to just get
security benefit brought by friends, or still take the privacy
protection to get more benefit brought by new communities.
On the other hand, a user might only imitate another user’s
security behavior but not change some or all of his/her
previous communities because of interests. These two situation
bring security behavior (strategy) deviation and community
deviation, respectively, as mentioned in Section II-A. We still
use u and v to denote the rates of strategy deviation and
community deviation, respectively.

We consider that user i is an imitated user with the probabil-
ity proportional to its fitness, which can be given by its payoff
relative to the total payoff, i.e., πi/

∑
j π j . Assume that both

the imitation and deviation are implemented independently
N times in each update step. Denote the average number of
imitators of user i as ωi . After one update step, we have

ωi = Nπi∑
j π j

. (6)

According to Equation (5), the total payoff can be written as
∑

j
π j =

∑

j

[
1+α

∑

l �= j

(
θ j · θl

)
f
(
s j , sl

)]

= N +α
∑

j

[∑

l

(
θ j ·θl

)
f
(
s j , sl

)−(
θ j ·θ j

)
f
(
s j , s j

)]

= N +α
∑

j

∑

l

(
θ j · θl

)
f
(
s j , sl

)

− α
∑

j
K

[
(β − 2) bs j s j +(2b − c) s j

]

= N +α
∑

j

∑

l

(
θ j ·θl

)
f
(
s j , sl

)−αK (βb−c)
∑

j
s j ,

(7)

where

f
(
si , s j

) = (β − 2) bs j sl + (b − c) s j + bsl, (8)

and the last term in Equation (7) is obtained considering
s j s j = s j , ∀ j . We consider the weak selection situation,

i.e., α → 0, because of that results derived from the weak
selection often remain as valid approximations for large selec-
tion strength [40]. In addition, the weak selection assumption
helps to achieve a close-form analysis of spreading process and
reveal how the behavior spreads over the social network [19].
Then we can rewrite ωi in Equation (6) as

ωi =1+α
[
(β−2)b

∑

j

(
θi ·θj

)
si sj +(b−c)

∑

j

(
θi ·θj

)
si

+b
∑

j

(
θi ·θj

)
sj −K (βb−c)si − (β−2)b

N

∑

j

∑

l

(
θj ·θl

)
sj sl

−2b−c

N

∑

j

∑

l

(
θj ·θl

)
sj + K (βb−c)

N

∑

j
s j

]
+o

(
α2

)
,

(9)

where the third equality is according to Taylor’s Theorem and
weak selection assumption with α → 0. The proof of
Equation (9) is provided in Appendix A.

To find out the ESS of the system state dynamic, we let
p denote the frequency of the users those select to take the
privacy protection. As assumed previously, there exist two
situations in the update process of the social network state,
one is the imitation of another user’s community membership
and security decision or the maintenance of his/her own, and
the other is the deviation. So we need to analyze the effect of
imitation and deviation on the average change in p. Because
of that the average value of p is constant, the two effects must
cancel [37]. Then we can get

〈
p̂
〉
imi + 〈

p̂
〉
dev = 0, (10)

where
〈
p̂
〉
imi and

〈
p̂
〉
dev denote the effect of imitation and devi-

ation, respectively, and they are both the continuous functions
of α.

Next, we consider the weak selection situation that α = 0,
and Taylor expansion of

〈
p̂
〉
imi can be written as

〈
p̂
〉
imi = 0 + α

〈
p̂
〉(1)
imi + o

(
α2

)
, (11)

where
〈
p̂
〉(1)
imi is the first derivative of

〈
p̂
〉
imi with α = 0,

and o
(
α2

)
is according to Taylor’s Theorem. We notice that

when
〈
p̂
〉(1)
imi > 0, the amount of users who take the privacy

protection due to the imitation increases, which means that the
user’s decision tends to the security behavior. On the contrary,
if

〈
p̂
〉(1)
imi < 0, the user’s decision tends to not taking the privacy

protection.

B. Finding the Critical Ratio

In order to obtain the critical parameter value of cost
performance, we must have

〈
p̂
〉(1)
imi = 0. The Lemma 1 provides

the critical cost performance b/c in the limit of weak selection.
Lemma 1: In a social network with N users, every user

belongs to exactly K communities. There are two strategies
Sp and Sn for users. The state of the social network is given as
S = (s,�). Interactions are only allowed among users sharing
communities in common. For each user, the payoff matrix is
given by (4). The critical cost performance that keeps the
neutral stationary state, i.e., the frequencies of users selecting
strategies Sp and Sn approaches stable state, is given by

(
b

c

)∗
= Num

Den
, (12)
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In Equation (12),

Num = −K 	 f1
0 + K

N
	 f2
0 + 	 f3
0 − 1

N
	 f5
0, (13)

Den = −βK 	 f1
0 + βK

N
	 f2
0 + 	 f3
0

+ (β − 1) 	 f4
0 − 2

N
	 f5
0 − β − 2

N
	 f6
0, (14)

where

f1 =
∑

i
si , f2 =

∑

i, j
si s j , (15a)

f3 =
∑

i, j

(
θi · θ j

)
si , f4 =

∑

i, j

(
θi · θ j

)
si s j , (15b)

f5 =
∑

i, j,l

(
θ j · θl

)
si s j , f6 =

∑

i, j,l

(
θ j · θl

)
si s j sl , (15c)

In Equation (13) and (14), the angular bracket with a subscript
zero represents the average value among all possible states S.
Take f3 for instance,

〈∑

i, j

(
θi ·θ j

)
si

〉

0
=

∑

S

(∑

i, j

(
θi ·θj

)
si |α=0

)
·q(0)S , (16)

where qS denotes the probability that the network is in
state S [37].

Proof: See Appendix B.
Remarks: In a social network whose current state S, i.e., the

users’ community memberships and security behaviors, can
change with every update, Equation (12) shows the threshold
of the security protection cost performance. This parameter
can be controlled by the social network manager, either by
adjusting the price of the security service that is related to the
parameter c, or by providing sufficient security services benefit
that is related to the parameter b. Note that the expression
of cost performance provided in Lemma 1 hold the weak
selection situation i.e., α → 0. Compared with [37], in which
a simplified Prisoners Dilemma game was analyzed, more
situations are considered in our game model. Next, we will
analyze the neutral stationary state and get the more general
expression of cost performance. Theorem 1 states the desired
term of cost performance βb/c.

Theorem 1: In a social network with N users, every user
belongs to exactly K communities. There are two strategies
Sp and Sn for users. Interactions are only allowed among
users sharing communities in common. For each user, the pay-
off matrix is given by (4). The deviate rates of commu-
nity membership imitation and strategy imitation are given
by v and u, respectively. The critical cost performance that
keeps the neutral stationary state is given by
(
βb

c

)∗
=1+μ+υ+3

μ+υ+1
· Kυ (μ+υ+2)+M (μ+1)

Kυ (μ+υ+2)+M (μ+2υ+3)
, (17)

where υ = 2Nv and μ = 2Nu.
Proof: To proof Theorem 1, each term of Equation (15)

needs to be analyzed. First, we consider that 	 f1
0 is the
average number of the users taking the privacy protection and
can be given by

	 f1
0 = N/2. (18)

For 	 f2
0, we notice that 	 f2
0 = N2 Pr
(
si = s j = 1

)
.

In a neutral stationary state, the probabilities of both of

user i and j select to take the privacy or not are equal,
i.e., Pr

(
si = s j = 1

) = Pr
(
si = s j = 0

) = Pr
(
si = s j

)
/2.

User i and j are selected randomly to be analyzed, and the
replacement is allowed. So we can get

	 f2
0 =
(

N2/2
)

Pr
(
si = s j

)
. (19)

Similar to the analysis above, we can get

	 f3
0 = N2〈θi · θ j 1 (si = 1)
〉
0 =

(
N2/2

) 〈
θi · θ j

〉
0, (20)

where 1 (·) is the indicator function, the value of which is 1
if the argument is true, and 0, otherwise. This indicator func-
tion introduces a non-zero contribution. So

〈
θi · θ j 1 (si = 1)

〉
0

indicates the average number of communities that user i and j
belong in common under the situation that the first user i takes
the privacy protection.

〈
θi · θ j

〉
0 represents the average number

of communities that the two users belong in common. With
the same analysis for Equation (18) - (20), we can get other
terms of (15) as follows.

	 f4
0 =
(

N2/2
) 〈
θi · θ j 1

(
si = s j

)〉
0, (21a)

	 f5
0 =
(

N3/2
) 〈
θ j · θl1

(
si = s j

)〉
0, (21b)

	 f6
0 =
(

N3/2
) 〈
θ j · θl1

(
si = s j = sl

)〉
0. (21c)

Equation (21a) provides the average number of communities
that the two random users have in common, and the case that
the two users select the same security behavior (both or neither
of the users take the privacy protection) give the non-zero con-
tribution to the average. In both of Equation (21b) and (21c),
three random users are considered. So the sum has N3 terms.
Equation (21b) provides the average number of communities
that latter two users j and l have in common, and the non-zero
contribution to the average is given by the case that first two
users i and j select the same security behavior. Equation (21c)
is the average number of communities that latter two users j
and l have in common, and the non-zero contribution to the
average is given by the case that all these three users take the
same security behavior. The three users are selected randomly
and with replacement.

Next, we need to calculate the terms obtained in Equa-
tion (18) - (21c) in the case that three users are selected to be
analyzed without replacement, i.e., i �= j and i �= j �= l. For
convenience, we give some notations as follows.

ϕ = Pr
(
si = s j |i �= j

)
, (22a)

ψ = 〈
θi · θ j |i �= j

〉
0, (22b)

γ = 〈
θi · θ j 1

(
si = s j

) |i �= j
〉
0, (22c)

ξ = 〈
θ j · θl1

(
si = s j

) |i �= j �= l
〉
0, (22d)

η = 〈
θ j · θl1

(
si = s j = sl

) |i �= j �= l
〉
0. (22e)

In (22), ψ is the average number of communities two different
randomly picked users have in common. γ is the average
number of communities the two users have in common given
that only users with the same security behavior. For ξ and η,
there are three different users considered. ξ is the average
number of communities the latter two users belonging in
common given that only the first two users have the same
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security behavior. η is the average number of communities
the latter two users having in common given that there is a
non-zero contribution to the average only when all the three
users take the same security behavior.

Given two users, the probability that the same user is chosen
again in the second selection experience is 1/N . Then we get

Pr
(
si = s j

) = 1

N
+ N − 1

N
ϕ, (23a)

〈
θi · θ j

〉
0 = K

N
+ N − 1

N
ψ, (23b)

〈
θi · θ j 1

(
si = s j

)〉
0 = K

N
+ N − 1

N
γ. (23c)

Then for the situation that three users i , j and l are given,
the probability that both of the last two users are same as
the first selection is N1 = 1/N2. The probability that none
of the users chosen in the second and third selection is same
as the one in the first selection is N2 = (N − 1) (N − 2)/N2.
The probability that the user chosen in the second selection is
same as the one in the first selection, and the third selection
chooses the different user is N3 = (N − 1)/N2. Then we get

〈
θ j ·θl1

(
si =s j

)〉
0 = N1 K +N2ξ+N3 (ψ+γ+Kϕ) , (24a)

〈
θ j ·θl1

(
si =s j =sl

)〉
0 = N1 K +N2η+N3(2γ+Kϕ) . (24b)

According to (23a) - (24), terms in (63) can be calculated as:

	 f2
0 = N2

2

(
1

N
+ N − 1

N
ϕ

)
, (25a)

	 f3
0 = N2

2

(
K

N
+ N − 1

N
ψ

)
, (25b)

	 f4
0 = N2

2

(
K

N
+ N − 1

N
γ

)
, (25c)

	 f5
0 = N3

2

[
N1 K + N2ξ + N3 (ψ + γ + Kϕ)

]
, (25d)

	 f6
0 = N3

2

[
N1 K + N2η + N3 (2γ + Kϕ)

]
. (25e)

By calculating, ϕ is eliminated, and the critical ratio b/c
expressed by ψ , γ , ξ and η is given as

(
b

c

)∗
= ψ − ξ + ψ−γ

N−2

ψ − 2ξ − (β − 2) η + (β − 1) γ + γ−ψ
N−2

. (26)

When the population of the social network is large,
i.e., N → ∞, we have

(
b

c

)∗

N→∞
= ψ − ξ

ψ − 2ξ − (β − 2) η + (β − 1) γ
. (27)

Next, we will calculate each quantity of ψ , γ ξ and η.
According to the physical interpretations of these parameters,
we notice that all of them cannot be written as independent
products of the average number of common communities
times the probability of taking the same security decision.
In response, we introduce a time instant that users’ most recent
common user being imitated (MRCI). Then if we fix the time
to the MRCI, the community deviations and strategy deviations

are independent. Take γ for instance, if the time to the MRCI
of users i and j is T = t , then we get
〈
θi · θ j 1

(
si = s j

) |i �= j, T = t
〉
0

= 〈
θi · θ j |i �= j, T = t

〉
0 · Pr

(
si = s j |i �= j, T = t

)
. (28)

So if the time to users’ MRCI is given, we can calculate ψ ,
γ , ξ and η. Given some randomly selected users, Lemma 2,
Lemma 3 and Lemma 4 present the probability of users’
MRCI, the probability that users have the same security behav-
ior at the time from their MRCI and the average number of
communities two random users have in common, respectively.
These results are summarized from [37], in which detailed
explanation can be found.

Lemma 2: Consider a social network with N users. Given
two random users, the probability that their MRCI is at time
T = t is

Pr (T = t) = (
1 − 1

N

)t−1 1
N . (29)

Given three random users, the probability that the first merging
by imitating the same user’s communities and strategy happens
at time t1 ≥ 1 and the second takes t2 ≥ 1 more time steps is

Pr (t1, t2) = 3
N2

[(
1 − 1

N

) (
1 − 2

N

)]t1−1(
1 − 1

N

)t2
. (30)

When N → ∞, let τ = t/N, τ1 = t1/N and τ2 = t2/N,
the distributions of Pr (T = t) and Pr (t1, t2) are given by

p (τ ) = e−τ , (31a)

p (τ1, τ2) = 3e−(3τ1+τ2). (31b)

Remarks: Lemma 2 indicates that the MRCI for random two
and three users situations both have exponential distributions.
The physical meaning of MRCI is the the most current
common user affected and imitated by another two users.
Note that the introduction of MRCI is for the independence
between the community deviations and strategy deviations,
which makes the calculation of ψ , γ ξ and η defined in
Equation (22) feasible, and time indexes τ , τ1 and τ2 will
be removed by the integral. Equation (31a) and (31b) hold for
the limit of N → ∞, which is rational for social networks
with large number of users.

Lemma 3: In a social network with N users, every user
belongs to exactly K communities, where K ≤ M. The deviate
rate of strategy imitation is given by u. The probability that
two random users have the same strategy at time t from their
MRCI is given by

ϕ (t) = Pr
(
si = s j |T = t

) = 1

2

[
1 + (1 − u)2t

]
. (32)

When N → ∞, let τ = t/N, τ1 = t1/N and τ2 = t2/N,
the distributions is

ϕ (τ) = 1

2

(
1 + e−μτ ) , (33)

where μ = 2Nu. Given that the first merging by imitating the
same user happens at time t1 ≥ 1 and the second takes t2 ≥ 1
extra time steps, the distribution of the probability that three
random users have the same strategy is given by

ϕ (τ1, τ2)= 1

8

[
(1−e1)

2 (1−e2)+(1+e1)
2 (1+e2)

]
, (34)
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where e1 = exp
{−μ

2 τ1
}
, e2 = exp

{−μ
2 (τ1 + τ2)

}
, μ = 2Nu.

Remarks: Equation (33) in Lemma 3 indicates that at τ < ∞
after the time when two users imitated the same other user,
these two users have the same security behavior with the
probability more than 0.5. The shorter τ is, the larger the
probability is, and the probability is an exponential distrib-
ution. Equation (34) has similar properties. Both of the two
equations hold for the N → ∞ and u → 0 limits. N → ∞ is
reasonable for most social networks. u → 0 indicates that if
a user imitates another user, he/she selects this user’s security
behavior with high probability. This means that the security
behaviors with high fitness can spread over the social network,
which is a favorable state for the social network manager.

Lemma 4: Consider a social network with N users distrib-
uted over M communities. Each user belongs to exactly K
communities, where K ≤ M. The deviate rate of community
membership imitation is given by v. Then the average number
of communities that two random users have in common is

ψ (τ) = Ae−υτ + B, (35)

where A = K − K 2

M , B = K 2

M and υ = 2Nv.
Remarks: Lemma 4 holds for the N → ∞ and v → 0 limits.

v → 0 indicates that the users’ community memberships are
not stable, and users participate in the imitated user’s commu-
nity memberships with high probability. This corresponds to
the scenarios in real social networks, where some communities
providing more comfortable service, such as security and
information service, can attract more and more users due to
the interactions and information sharing among users.

According to Lemma 2 and Lemma 4, we can calculate that

ψ= 〈
θi ·θ j |i �= j

〉
0 =

∫ ∞

0
ψ (τ) p (τ ) dτ= A

υ+1
+B. (36)

Next, we analyze and solve γ defined as (22c). Let

γ (τ) = 〈
θi · θ j 1

(
si = s j

) |i �= j, T = τ
〉
0. (37)

As discussed above, the deviations of community membership
and security behavior are independent when the time to the
MRCI of users is fixed, i.e., γ (τ) = ϕ (τ) ψ (τ). Then plug
Equation (33) and (35) in and we can get

γ =
∫ ∞

0
ϕ (τ) ψ (τ) p (τ ) dτ

= 1

2

(
A

υ + 1
+ A

μ+ υ + 1
+ B

μ+ 1
+ B

)
. (38)

Then we need to calculate ξ , for which three users i , j and l
are considered. As defined in Equation (22d), ξ indicates the
amount of communities the latter two users having in common
given that the first two users have the same security behavior,
for three distinct random users. For any three random users,
they must have an MRCI. Let T (i, j) be the time up to the
MRCI of i and j , and T ( j, l) be the time up to the MRCI
of j and l. We define that

ξ (τ1, τ2)=
〈
θ j ·θl1

(
si =s j

) |i �= j �= l, T1 =τ1, T2 =τ2
〉
0, (39)

where T1 and T2 denote the time of the first and sec-
ond merging by imitating other users happen, respectively.

As mentioned before, the community deviations and the strat-
egy deviations are independent if the time to the MRCI is
fixed. Therefore, ξ (τ1, τ2) can be expressed as a product.
By looking back the time into the past, there are three cases
shown in Fig. 2 for the same imitated users of three distinct
users i , j and l as follows.

1) user i and j have the same imitated user first, and then
they have the same imitated user with l:

ξ (τ1, τ2) = ϕ (τ1)ψ (τ1 + τ2) ; (40)

2) user j and l have the same imitated user first, and then
they have the same imitated user with i :

ξ (τ1, τ2) = ϕ (τ1 + τ2) ψ (τ1) ; (41)

3) user i and l have the same imitated user first, and then
they have the same imitated user with j :

ξ (τ1, τ2) = ϕ (τ1 + τ2) ψ (τ1 + τ2) . (42)

Each of the three cases happens with probability 1/3, so we
can get ξ as

ξ = 1

3

∫ ∞

0
dτ1

∫ ∞

0
p (τ1, τ2) (ϕ (τ1) ψ (τ1 + τ2)

+ ϕ (τ1 + τ2) ψ (τ1)+ ϕ (τ1 + τ2) ψ (τ1 + τ2)) dτ2

= 1

2

[
A

μ+ υ + 3

(
1

υ + 1
+ 1

μ+ 1
+ 1

μ+ υ + 1

)

+ A

υ + 1
+ B

μ+ 1
+ B

]
. (43)

With the similar analysis, we can find η as

η = 1

3

∫ ∞

0
dτ1

∫ ∞

0
ϕ (τ1, τ2) (ψ (τ1)+ ψ (τ1 + τ2)

+ψ (τ1 + τ2)) p (τ1, τ2) dτ2

= 1

4

[
A

μ+ υ + 3

(
1 + 2

υ + 1
+ 4

μ+ 2
+ 8

μ+ 2υ + 2

)

+ A

υ + 1
+ 3B

μ+ 3

(
1 + 4

μ+ 2

)
+ B

]
. (44)

According to Equation (36), (38), (43), (44) and (27),
we can obtain the critical (b/c)∗ as
(

b

c

)∗
= 1

β

(
1+μ+υ+3

μ+υ+1
· Kυ (μ+υ+2)+M (μ+1)

Kυ (μ+υ+2)+M (μ+2υ+3)

)
,

which equals to
(
βb

c

)∗
=1+μ+υ+3

μ+υ+1
· Kυ (μ+υ+2)+M (μ+1)

Kυ (μ+υ+2)+M (μ+2υ+3)
. (45)

For μ → 0, we have
(
βb

c

)∗
= 1 + υ + 3

υ + 1
· Kυ (υ + 2)+ M

Kυ (υ + 2)+ M (2υ + 3)
. (46)

This completes the proof of Theorem 1.
Remarks:
1) Properties: Theorem 1 gives the critical cost performance

(b/c)∗ or (βb/c)∗. In the equilibrium distribution of the
imitation-deviation process, if the cost performance exceeds
this critical value, the users in the social network will select
the strategy of privacy protection more frequently than the
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Fig. 2. Three cases of imitated users for three distinct random users i , j and l by looking back the time into the past. (a) T (i, j) = τ1, T ( j, l) = τ1 + τ2.
(b) T (i, j) = τ1 + τ2, T ( j, l) = τ1. (c) T (i, j) = τ1 + τ2, T ( j, l) = τ1 + τ2.

other strategy, i.e., not take the privacy protection, which will
promote the diffusion of security behaviors among the net-
work. Moreover, consider (βb/c)∗ provided in Theorem 1 as
a function of K/M , and we take the derivative of (βb/c)∗ with
respect to K/M , then get ∂(βb/c)∗

∂(K/M) > 0. So (βb/c)∗ increases
with increasing K/M . Hence, for a social network with M
communities, the best choice for social network managers to
set the minimize (βb/c)∗ is allowing their users to belong to
only one community, i.e., K = 1.

2) Feasibility and Flexibility: The obtained critical cost
performance gives suggestions on privacy protection quality
and “pricing” strategy for the social network managers from
the perspective of economics to incentive their users to take the
high quality of privacy protection service. These suggestions
are feasible and realizable to be introduced into the social net-
works, according to the definitions of b and c discussed in the
previous section. In addition, it is also flexible to apply these
suggestions to the existing social networks, such as WeChat
and Facebook. Specifically, the high quality of privacy protec-
tion service for the users can be more rigorous backstage ver-
ification and authorization when some uncertain users manage
to access the personal space, information or photo of legitimate
users. In addition, to improve the security benefit or reduce
the cost of users, some other security related service can
also be provided. Take WeChat for instance, a user can know
how many of his/her friends have followed a certain official
account, which is a necessary and helpful message for users to
choose this official account or not. However, this information
can only be obtained if this user has update his/her APP to the
latest version, which can guarantee safe enough privacy pro-
tection to provide such personal information of users’ friends.
This service above can only bring benefit and better experience
to users who take the service, and to their friends who also
update the APP and take the service. Therefore, the brought
benefit can be considered as the reduction of cost c, but not
as the increasing of b. Meanwhile, in this case, the increasing
cost of users to obtain the service can be measured by the
memory occupancy increment to update the APP.

IV. PRIVACY PROTECTION AMONG USERS

WITH L-TRIGGERING GAME

In a social network, the interaction between two users
sometimes depends on the strength of their connection, which
could be measured by the number of communities that they
have in common. In other words, some interactions, espe-
cially behavior to take security functions, can only happen
among users belonging to multiple common communities.

Specifically, user i and j are sharing a close relationship,
which means that they have many interested communities in
common. As a result, most information of user j are accessed
for user i . In this case, if user i selects the privacy protection,
user j ’s personal information even privacy information can be
protected to a great extent. Conversely, if the amount of the
two users’ common communities is really small, for instance,
user i and j coming from different countries just join the
same travel community because of their annual leaves, then
the relationship between the two users is actually quite weak
and there is little personal information can be accessed for
each other. In this case, user j cannot benefit from user i ’s
selection of privacy protection.

In response, we generalize the model, in which the users’
interaction happens as long as they have at least one com-
munities in common, into a L-triggering game situation in
this section. In the extended model, users only influence each
other if they have at least a minimum number of common
communities, L. In a social network, if a user taking the
privacy protection i meets another user j in θi ·θ j communities,
then i interact θi · θ j times if θi · θ j ≥ L, otherwise, the game
between them is not triggered. We call this mechanism as
L-triggering game. We notice that L = 1 degenerates to the
previous model. The analysis of cost performance at the end
of this section indicates that large values of L lead to that
users with security behavior are more imitative in choosing
with whom to imitate. Next, we will analyze the impact of
L-triggering game on the critical cost performance.

A. L-Triggering Game

Given 1 ≤ L ≤ K . When L = 1 the model is same
as of Section III. Then the fitness of user i formulated as
Equation (5) can be rewritten as

πi =1+α
∑

j �=i
χi j

(
θi ·θ j

)[
(β−2)bsi s j +(b−c) si +bs j

]
, (47)

where χi j = 1 if θi · θ j ≥ L, and χi j = 0, otherwise.
We notice that ϕ (τ), which indicates the distribution of

the probability that two random users have the same security
behavior at the time τ from their MRCI, and ϕ (τ1, τ2),
the distribution of the probability that three random users
have the same security behavior, are unchanged. However,
ψ (τ) = 〈

θi · θ j |i �= j, T = τ
〉
0 now changes to ψ̂ (τ ) =〈

χi j θi · θ j |i �= j, T = τ
〉
0, which denotes the average number

of communities that two random users have in common when
they have at least L communities in common. Consequently,
ψ , γ , ξ and η will all change with the same physical
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interpretation, but under the constrain that related users have
at least L common communities, which can be rewritten as

ψ̂ =
∫ ∞

0
ψ̂ (τ ) p (τ ) dτ, (48a)

γ̂ =
∫ ∞

0
ψ̂ (τ ) ϕ (τ ) p (τ ) dτ , (48b)

ξ̂ = 1

3

∫ ∞

0
dτ1

∫ ∞

0

(
ϕ (τ1) ψ̂ (τ1 + τ2)+ ϕ (τ1 + τ2) ψ̂ (τ1)

+ ϕ (τ1 + τ2) ψ̂ (τ1 + τ2)
)

p (τ1, τ2) dτ2, (48c)

η̂ = 1

3

∫ ∞

0
dτ1

∫ ∞

0
ϕ (τ1, τ2)

(
ψ̂ (τ1)+ ψ̂ (τ1 + τ2)

+ ψ̂ (τ1 + τ2)
)

p (τ1, τ2) dτ2. (48d)

Next, we will find ψ̂ (τ ). The probability that two users
have i ≤ K common communities at time T = τ from their
MRCI is

κi (τ ) =
⎧
⎨

⎩

e−υτ + (
1 − e−υτ )/

(
M
K

)
, i = K ;

(
1 − e−υτ )

(
K
i

)(
M − K
K − i

)
/
(

M
K

)
, i < K .

(49)

Then we have

ψ̂ (τ ) = 〈
χi j θi · θ j |i �= j, T = τ

〉
0 =

∑K

i=L
iκi (τ ). (50)

1) Case 1 (L = 1): According to Vandemonde convolution
formula, we have

ψ̂ (τ ) =
∑K

i=1
iκi (τ )

= K e−υτ + (
1 − e−υτ )∑K

i=1
i

(
K
i

)(
M − K
K − i

)
/

(
M
K

)

= K e−υτ + (
1 − e−υτ ) K

(
M − 1
K − 1

)
/

(
M
K

)

= e−υτ K (1 − K/M)+ K 2/M. (51)

The result is same as the previous model provided in Lemma 4.
2) Case 2 (1 < L ≤ K ): Let K̂ =

M
K

∑K
i=L i

(
K
i

)(
M − K
K − i

)
/

(
M
K

)
, we get [37]

ψ̂ (τ ) = e−υτ K
(

1 − K̂/M
)

+ K K̂/M. (52)

Then the critical cost performance formulated in
Equation (46) turns to

(
βb

c

)∗
= 1 + υ + 3

υ + 1
· K̂υ (υ + 2)+ M

K̂υ (υ + 2)+ M (2υ + 3)
, (53)

in case that N → ∞ and μ → 0. Notice that K̂ = K ,
if L = 1.

Remarks: Comparing with Equation (46), the expressions
of (βb/c)∗min for non-triggering game and L-triggering game
are much the same, except that K̂ ≤ K , and the equality hold
up if and only if L = 1.

B. Analysis of Cost Performance

Setting appropriate cost performance can facilitate the secu-
rity behavior, i.e., the action of taking the privacy protection,
among the entire social network. In this part, we will find the
minimum cost performance that can make users to choose the
privacy protection more frequently than not.

According to the last two sections, we notice that the result
of the cost performance shown in Equation (53) is general,
since that the L-triggering game becomes the non-triggering
game when L = 1. So we only analyze the model with the
L-triggering game. (βb/c)∗ given by Equation (53) has a
minimum value as a function of υ. Then let r (υ) = (βb/c)∗,
and we take the derivative of r (υ) with respect to υ. Set the
result equal to zero and we get

M

K̂
= υ2

(
υ2 + 4υ + 4

)

υ2 + 6υ + 6
, (54)

according to which, optimal solution υ∗ must satisfies√
M/K̂ < υ∗ <

√
M/K̂ + 1. If M/K̂ is large, solution υ∗ to

obtain the minimum cost performance is

υ∗ =
√

M/K̂ , (55)

and the minimum cost performance is
(
βb
c

)∗
min

= 1 +
√

M/K̂+3
(√

M/K̂+1
)2 . (56)

Remarks: According to Equation (56), (βb/c)∗min ∼√
K̂/M , which means that small values of K̂ and large

values of M can promote the evolution of security behavior
among the social network. For non-triggering game situation,
i.e., K̂ = K , we can notice that given number of commu-
nities M , it is best if users belong to only one community
(K = 1). The larger K is, it is harder for users who take
the privacy protection to avoid the exploitation by users who
do not take the privacy protection. For L-triggering game
situation, K̂ < K if M is fixed according to the definition
of K̂ in section IV-A.2, then smaller (βb/c)∗min can be gotten.
So large values of L lead to that users with security behavior
are more imitative in choosing with whom to imitate.

V. SIMULATION RESULTS

The critical cost performance is an important parameter
that helps the social network managers to make appropriate
security service level and payment mechanism to encourage
their users to accept the security service, and then promote
the spreading of this secure behavior. In this part, we perform
numerical simulation experiments to analyze properties and
performances of the critical cost performance and its influen-
tial factors such as the community deviate rate, population
and number of communities of the social network. First,
the community deviate rate v reflects the subjective selectivity
for community memberships. If users select communities
depending on their own interest mostly, but not on those
users with high fitness, then v is large. Otherwise, v is small.
Then we analyze the effect of the community deviate rate
υ = 2Nv for different selections of K and L, which denote
the number of communities that a user is allowed to belong



DU et al.: COMMUNITY-STRUCTURED EVOLUTIONARY GAME FOR PRIVACY PROTECTION IN SOCIAL NETWORKS 585

Fig. 3. Critical cost performance (βb/c)∗ versus the community deviate rate
υ = 2Nv . The population size is large, N = 104. The strategy deviate rate is
u = 10−4. The number of communities is M = 20. (a) Non-triggering game.
(b) L-triggering game.

to and the minimum number of common communities that
game can be triggered. The population of the social network
is large, i.e., N = 104 (N → ∞), and the number of
communities is set as M = 20. We set the strategy deviate
rate as u = 10−4 (u → 0). We consider the population of
the network is constant. Simulation results of non-triggering
game and L-triggering game are shown in Fig. 3 (a) and
Fig. 3 (b), respectively. As shown in the results, the critical cost
performance (βb/c)∗ is a U-shaped function of community
deviate rate υ. When υ is small, (βb/c)∗ tend to be large and
all users belong to the same community. Conversely, when υ
is large, the community affiliations cannot persist for a long
time. Moreover, the results of numerical analysis shown in
Equation (55) and (56) can be demonstrated by the simulations
results shown in Fig. 3.

As shown in Fig. 3 (a), we notice that for a fixed number of
communities M , small values of K can facilitate the evolution
of the security behavior, which means that the selection of
taking the privacy protection is promoted in the evolution
process. This conclusion is consistent with the numerical
analysis shown in Equation (56). Consequently, when the
number of communities is given, the best choice for users
is to belong to K = 1 community. With the increasing of

Fig. 4. Critical cost performance (βb/c)∗ versus the population of the social
network N under the non-triggering game and L-triggering game, respectively.
The strategy deviate rate is u = 10−4, and the community deviate rate is
v = 0.01.

K , it is hard for users taking the privacy protection to avoid
the exploitation by users not taking the privacy protection.
But according the results of the L-triggering game situation
shown in Fig. 3 (b), for K = 3, if L = 2 or L = 3, the critical
cost performance is smaller than K = 1. These results indicate
that belonging to more communities, i.e., K > 1, can also
facilitate the evolution of the security behavior when the game
only happen if users have a certain minimum number of
common communities L.

We test the effects of the population of the network on the
critical cost performance, and the results are shown in Fig. 4.
We set the strategy deviate rate as u = 10−4, and the
community deviate rate as v = 0.01. Parameter settings of
M , K and L are shown in the figures. Results illustrate
that for both non-triggering game and L-triggering game
cases, the critical cost performance is a convex function of
population N . According to the results, we notice that if the
population of the network is too small, then the effect of spite
tends to be strong, so the critical cost performance (βb/c)∗
has to be very large. If N = 2, it will never pay to users
with security behavior, which means that users will not take
the privacy protection to ensure their information security.
When N is large, all the communities that get population by
users who take the privacy protection and not take the privacy
protection cannot persist for long. In addition, the lower bound
of the critical cost performance is 1, which is consistent with
the result in Equation (56).

As shown in Fig. 5, the cost performance decreases as the
number of communities M increasing. These results indicate
that more communities is helpful for the spreading of security
behavior, which mean that adding community number will
help users to take privacy protection more frequently.

Next, we simulate the evolution process of the strategies
that taking the privacy protection or not in the social net-
work. The topology we used in this simulation is based on
Flickr, a real-world online social network database. There are
5,899,882 edges connecting 80,513 users in the Flickr graph
dataset, and the edge represents the connection between two
users. In order to test the performance of the evolutionary
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TABLE II

PARAMETERS SETTING OF THE SIMULATION FOR DIFFERENT CASES

Fig. 5. Critical cost performance (βb/c)∗ versus the number of communities
M. The population size of the social network is set as N = 15. The strategy
deviate rate is u = 10−4, and the community deviate rate is v = 0.01.
(a) Non-triggering game. (b) L-triggering game.

game theoretic framework we proposed, the topology of Flickr
is modified. The communities are established based on the
users with most importance in the network, i.e., with largest
betweennesses or having largest amounts of one-hop and
two-hop neighborhoods. In addition, each user is allowed to
join limited K communities. If one user belongs to more
than K communities, the topology will be modified as the
following rules: The connection between user i and commu-
nity k is established with probability

pik = Mk∑
j∈Ji

M j
, (57)

Fig. 6. Graph structures of the modified Flickr network used for simulation.
(a) N = 50, 000, M = 15, K = 1. Case 1, 2, 5, 6. (b) N = 50, 000, M = 20,
K = 2. Case 3, 4, 7, 8.

where Mk is the number of users belonging to community k,
and Ji is the set of all communities belonged by user i . For the
network, we use N = 50, 000 users in Flickr distributing over
M = 15 or M = 20 communities. Each user belongs to K = 1
or K = 2 communities. The graph structures of the modified
Flickr network are depicted in Fig. 6. We set the strategy
deviate rate and community deviate rate as u = 10−4 and
v = 0.01, responsibility. The parameter settings for the eight
cases are shown in Table II. In Table II, α = 0.05 and α = 0.2
denote different intensities of selection, p0 = 0.5 and p0 = 0.4
indicate the different initialized frequencies of the users who
select to take the privacy protection, and (βb/c)∗ is obtained
according to Equation (46). In our simulation, the network
updates 100 times. Evolutions of the privacy protection in the
network with different cost performance are shown in Fig. 7,
in which c = 1, β = 2, and b varies to realize different βb/c.
As accepted, the evolutionary stable state of the frequency of
users taking the privacy protection is 1 when βb/c > (βb/c)∗,
otherwise, 0. These results demonstrate that when the cost
performance exceeds the critical cost performance, thenusers
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Fig. 7. Evolution of the privacy protection in the network with a population of size N = 50, 000. The strategy deviate rate is u = 10−4, and the community
deviate rate is v = 0.01. Other parameters values are set as Table II. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6. (g) Case 7.
(h) Case 8.

select to take the privacy protection more frequently than
not. In addition, the evolutionary stable state of the network
cannot be achieved if βb/c = (βb/c)∗, and the frequency is
around 0.5.

Remarks: For a social network with given number of com-
munity and number of community that each user is allowed
to belong to, the critical cost performance can be obtained
through Theorem 1 and Equation (53). Social network man-
agers have to make appropriate security service b and payment
mechanism c to ensure that βb/c > (βb/c)∗. Then their
users can be encourage to accept the security service, and
the spreading of the secure behavior can be promoted over
the social network. Besides, we notice that the convergence
speed of evolutionary stable state depends on many factors,
such as M , the number of communities in the network,
and K , the number of communities each user belongs to.
Given the same cost performance, L, α and p0, small values
of M/K result in fast convergence. This result is reasonable.
On the one hand, if M is fixed, larger values of K increase
dimensions of the relationship among users, then each user
might have more new friends, and the closeness to his/her old
friends might be stronger. These changes can help the spread-
ing of user behaviors, i.e., taking the privacy protection if
βb/c > (βb/c)∗, otherwise, not taking the privacy protection.
On the other hand, for fixed K , smaller M means that there
might be more common communities among every two users.
Therefore, the closeness between users tends to be stronger,
which can help the spreading of user behaviors. After social
network managers release a new security service, such as the
privacy protection in our work, security service b and cost c for
users are determined. Then the speed of revenue for managers
and the set up of privacy protection at the network platform
depend on how fast that all users take the privacy protection,
which is concerned with the convergence speed. It will help
the network managers to make network structure and service
plan, and the storage and processing capacities of network
server can also be planed for the improvement of the user
information security.

VI. CONCLUSION

In this paper, we analyze the privacy protection behaviors
of social network users by a community structured evolu-
tionary game theoretic framework. The players, strategies,
payoff matrix and the topology structure of users are defined
in this framework. We obtain the critical cost performance,
which is an important parameter that can help social net-
works to design incentive mechanisms to facilitate the privacy
protection behavior among their users. Simulation results
demonstrate that the proposed theoretic framework is effective
in modeling the users’ relationship and privacy protection
behavior.

APPENDIX A
PROOF OF EQUATION (9)

Proof: Similar to the derivation of Equation (7), we get:

πi = 1 + α
∑

j

(
θi · θ j

)
f
(
si , s j

) − αK (βb − c) si . (58)

For α = 0, the Taylor expansion of ωi can be given by:

ωi = Nπi∑
j π j

= ωi (0)+ αω
(1)
i (0)+ o

(
α2

)
, (59)

where ω(1)i (0) = ∂ωi (α)/∂a.
According to Equation (5) and (7), we have

∂
∑

jπ j

∂α
|α=0 =

∑

j

∑

l

(
θj ·θl

)
f
(
s j , sl

)−K (bβ−c)
∑

j
s j . (60)

Then ω(1)i (0) can be calculated as

ω
(1)
i (0)

=
N2

[∑
j

(
θi · θ j

)
f
(
si , s j

) − K (βb − c) si

]

N2

−
N

[∑
j
∑

l

(
θ j · θl

)
f
(
s j , sl

) − K (bβ − c)
∑

j s j

]

N2
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=
∑

j

(
θi · θ j

)[
(β−2) bsi s j +(b−c) si + bs j

]−K (βb−c) si

− 1

N

[∑

j

∑

l

(
θ j · θl

) [
(β − 2) bs j sl + (b − c) s j + bsl

]

− K (bβ − c)
∑

j
s j

]

= (β − 2) b
∑

j

(
θi · θ j

)
si s j + (b − c)

∑

j

(
θi · θ j

)
si

+ b
∑

j

(
θi · θ j

)
s j − K (βb − c) si

− (β−2) b

N

∑

j

∑

l

(
θ j · θl

)
s j sl − b−c

N

∑

j

∑

l

(
θ j · θl

)
s j

− 1

N

∑

j

∑

l

(
θ j · θl

)
sl + K (bβ − c)

N

∑

j
s j .

Then we can rewrite ωi in Equation (59) as

ωi = 1+α
[
(β−2) b

∑

j

(
θi · θ j

)
si s j +(b−c)

∑

j

(
θi · θ j

)
si

+b
∑

j

(
θi · θ j

)
s j−K (βb−c) si − (β−2) b

N

∑

j

∑

l

(
θ j ·θl

)
s j sl

− 2b−c

N

∑

j

∑

l

(
θ j · θl

)
s j + K (βb−c)

N

∑

j
s j

]
+ o

(
α2

)
.

This completes the proof of Equation (9).

APPENDIX B
PROOF OF LEMMA 1

Proof: We pursuit the stable state by calculating
〈
p̂
〉
imi,

which can be given by

ωi =1+α
[
(β−2)b

∑

j

(
θi ·θj

)
si sj +(b−c)

∑

j

(
θi ·θj

)
si

+b
∑

j

(
θi ·θj

)
sj −K (βb−c)si − (β−2)b

N

∑

j

∑

l

(
θj ·θl

)
sj sl

−2b−c

N

∑

j

∑

l

(
θ j · θl

)
s j + K (βb−c)

N

∑

j
s j

]
+o

(
α2

)
.

We plug Equation (9) into
∑

i si
dωi
dα and get

∑

i
si

dωi

dα
=− K (βb−c) f1− K (βb−c)

N
f2+(b−c) f3

+ (β−1)b f4− 2b − c

N
f5− (β−2) b

N
f6,

(61)

where fi (i = 1, 2, · · · , 6) are defined by (15). Then plug can
calculate and gain the first derivative of

〈
p̂
〉
imi as follows

	p
(1)imi =
1

N

[
−K (βb−c)	 f1
0− K (βb−c)

N
	 f2
0+(b−c)	 f3
0

+ (β−1)b	 f4
0− 2b−c

N
	 f5
0− (β−2) b

N
	 f6
0

]
.

(62)

As the derivation process above, we can obtain the crit-
ical cost performance b/c when Equation (62) equals zero.
The obtained (b/c)∗ can be given by

(
b

c

)∗
= −K 	 f1
0 + K

N 	 f2
0 + 	 f3
0 − 1
N 	 f5
0

f ( f1, f2, f3, f4, f5, f6)
, (63)

where f ( f1, f2, f3, f4, f1, f6) = −βK 	 f1
0 + βK
N 	 f2
0 +

	 f3
0 + (β − 1) 	 f4
0 − 2
N 	 f5
0 − β−2

N 	 f6
0. This completes
the proof of Lemma 1.
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